Uniqueness for the Cauchy problem for degenerate parabolic equations
نویسندگان
چکیده
منابع مشابه
Existence and Uniqueness to the Cauchy Problem for Linear and Semilinear Parabolic Equations with Local Conditions
We consider the Cauchy problem in R for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The line...
متن کاملGlobal Attractors for Degenerate Parabolic Equations without Uniqueness
In this paper, using theory of attractors for multi-valued semiflows and semiprocesses, we prove the existence of compact attractor for a semilinear degenerate parabolic equation involving the Grushin operator in which the conditions imposed on the nonlinearity provide the global existence of a weak solution, but not uniqueness. Mathematics Subject Classification: 35B41, 35K65, 35D05
متن کاملThe Cauchy Problem for Semilinear Parabolic Equations in Besov Spaces
In this paper we first give a unified method by introducing the concept of admissible triplets to study local and global Cauchy problems for semi-linear parabolic equations with a general nonlinear term in different Sobolev spaces. In particular, we establish the local well-posedness and small global well-posedness of the Cauchy problem for semi-linear parabolic equations without the homogeneou...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولBackward Uniqueness for Parabolic Equations
It is shown that a function u satisfying |∂t + u| M (|u| + |∇u|), |u(x, t)| MeM|x| in (R \ BR) × [0, T ] and u(x, 0) = 0 for x ∈ R \ BR must vanish identically in R \ BR × [0, T ].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1973
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1973.46.131